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At room temperature, micron-sized sheets of freestanding graphene are in constant motion, even in the
presence of an applied bias voltage. We quantify the out-of-plane movement by collecting the displacement
current using a nearby small-area metal electrode and present an Ito-Langevin model for the motion coupled
to a circuit containing diodes. Numerical simulations show that the system reaches thermal equilibrium and the
average rates of heat and work provided by stochastic thermodynamics tend quickly to zero. However, there is
power dissipated by the load resistor, and its time average is exactly equal to the power supplied by the thermal
bath. The exact power formula is similar to Nyquist’s noise power formula, except that the rate of change of diode
resistance significantly boosts the output power, and the movement of the graphene shifts the power spectrum
to lower frequencies. We have calculated the equilibrium average of the power by asymptotic and numerical
methods. Excellent agreement is found between experiment and theory.
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I. INTRODUCTION

Freestanding, two-dimensional (2D) crystalline mem-
branes exhibit unique out-of-plane motion [1,2]. When
relaxed, sheets of freestanding graphene feature a rippled mor-
phology, in which adjacent regions alternate between concave
and convex curvature [3]. The origin of these nanometer-
sized ripples is still an open question [4,5]. Theoretical work
points to electron-phonon coupling as the source because it
suppresses long-wavelength bending rigidity and enhances
off-plane fluctuations [6–8]. In a state of thermal equilib-
rium, Guinea et al. derived a system of equations for the
height of a graphene membrane including auxiliary stress and
curvature fields [8]. Within this perturbative formulation of
quantum statistical mechanics, circular graphene membranes
spontaneously buckle below a critical temperature and above
a critical radius [9]. Numerical studies of static rippling in a
membrane coupled with Dirac fermions show a phase transi-
tion from flat to rippled morphology [10].

Early phenomenological studies of dynamic fluctuations
modeled the electron-phonon interaction by coupling point
particles at the nodes of a hexagonal lattice to Ising spins
that undergo Glauber dynamics [11,12]. The spins exchange
energy with a thermal bath, their dynamics show rippling, and
their interaction with the membrane drives the whole system
to equilibrium [13].
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A. Flexible and inflexible freestanding graphene

The first reported experimental studies of freestanding
graphene using scanning tunneling microscopy (STM) were
published in 2012 [14–18]. Due to the slow scanning nature
of STM, images of the moving graphene were too noisy to
be meaningful. Sample quality and cleanliness became the
primary focus in the drive to develop methods to stabilize
the surface. It was then discovered that after applying volt-
age ramps with the feedback on, the graphene was quickly
pulled and became inflexible, making it possible to obtain
atomic resolution STM images [19–24]. The surfaces were
clean and the honeycomb pattern evident. This new technique
led to research on two types of freestanding graphene: flex-
ible and inflexible. Studies on flexible graphene could then
move forward, shifting from imaging mode to point-mode.
In point-mode, the STM acquires data at much higher rates,
continuously tracking the random up and down movements
of the graphene. Time-series data appear similar to one-
dimensional random walks. This is consistent with electron
mobility measurements that indirectly confirm the presence of
thermal vibrations [25]. This novel use of STM allows a rich
set of stochastic tools normally used in soft-matter physics to
be applied to inorganic crystals [26].

Experiments by Ackerman et al. measured the out-of-plane
motion of atoms in freestanding graphene using point-mode
STM [2]. They show that single atoms in the membrane ex-
perience Brownian motion with sporadic large jumps that are
typical of Lévy processes [2,27]. Rare jumps in the height of
the graphene atoms correspond to coherent inversions of the
curvature of the ripples on which the atoms sit. This under-
standing is rigorously supported by both molecular dynamics
[2] and spin-membrane Glauber dynamics [13,28].
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B. Theory and experiments of fluctuating
freestanding graphene

We have studied the thermal fluctuations of freestanding
graphene membranes using point-mode STM. To minimize
the influence of the STM feedback circuit on fluctuations, we
disabled it in a controlled manner and backed the tip away
from the surface. With the feedback disabled, we operated
the STM in constant-height mode rather than constant-current
mode. This allows us to measure the displacement cur-
rent resulting from graphene moving relative to the tip.
While constant-height mode precludes mapping the surface of
graphene and directly measuring the distance to the STM tip,
we can measure the fluctuating current and dissipated power.
The average dissipated power is very small for the bias voltage
up to about 10 V but increases noticeably beyond that. Our
observations allow us to introduce a model of freestanding
graphene coupled to an electric circuit. Spontaneous thermal
fluctuations in a soft and flexible freestanding graphene mem-
brane are envisioned as random flipping of the ripple closest to
the STM tip between convex and concave shapes. The ripple
acts as a Brownian particle in a double-well potential subject
to friction, thermal noise, and the interaction with STM tip
and circuit. To this end, ripple and STM tip act as a capacitor
of variable capacitance, which is inversely proportional to the
distance between ripple and tip. The electrical circuit includes
two diodes in parallel and opposition, which act as nonlinear
resistors and enable measurement of displacement current
flowing counter to the bias voltage. Resistor noise implies that
we need to include both state dependent Nyquist noise and a
temperature-dependent drift term in the circuit equations. We
have studied the stochastic thermodynamics of the resulting
novel equations. When the graphene moves away from the
tip, charge must flow counter to the bias voltage and per-
form electrical work. We calculated the equilibrium average
of the power dissipated at the diodes, both numerically and
by asymptotic methods, and fit it to the experimental results.
This calculation shows that the power varies many orders of
magnitude for realistic values of the parameters. We have also
simulated the stochastic equations using convenient parameter
values that make possible their numerical integration. These
simulations show that long-time averages combined with en-
semble averages agree with equilibrium averages. Our model
provides a rigorous demonstration that continuous thermal
power can be supplied by a Brownian particle at a single
temperature while in thermodynamic equilibrium, provided
the same amount of power is continuously dissipated in a
resistor. Here, coupling to the circuit allows electrical work to
be carried out on the load resistor without violating the second
law of thermodynamics.

The paper is structured as follows. The STM experiments
and results are described in Sec. II. The theoretical model is
introduced in Sec. III, in which we derive the Ito-Langevin
equations for graphene ripple, STM tip, and electrical circuit
containing diodes as nonlinear resistors. These equations can
also be derived from a master equation formulation for ele-
mentary charges arriving at the plates of the graphene-STM
tip variable capacitor, as explained in Appendix A. Section IV
is devoted to the modeling of stochastic thermodynamics. We
derive formulas for the heat flux produced by friction and
random forces acting on the graphene ripple and for work

flux created by the circuit on the ripple. We calculate the
equilibrium average of the power dissipated at the diodes,
which is found to be different from zero but equal to the
average power provided by the thermal bath. Some technical
details are relegated to Appendix B. We compare theory and
experiments in Sec. V. Section VI contains a discussion and
summary of our results.

II. STM EXPERIMENTS AND RESULTS

For this study, graphene was commercially grown on Ni
and then dry transferred to a 2000-mesh, ultrafine copper grid
featuring a lattice of square holes (each 7.5 μm wide) and bar
supports (each 5 μm wide). The graphene sample is larger
than the transmission electron microscope (TEM) grid and
covers it entirely. Excess graphene bonds to the side wall [29].
We have previously published scanning electron microscope
images and confirmed 90% coverage of the grid [17]. We
have also previously published numerous atomic resolution
STM images of graphene on the copper bar supports of the
TEM grid and of freestanding graphene after being pulled to
an inflexible state using voltage ramps [17,21].

An Omicron ultrahigh vacuum STM (base pressure 10−10

mbar) operated at room temperature was used. From our ex-
perience, if the graphene film is mounted toward the STM tip,
then it can be pulled off the copper grid. Therefore, for this
study the graphene film was mounted toward the sample plate
on standoffs, forcing the STM tip to approach the graphene
through the grid holes. The entire STM chamber rests on
an active, noise-cancelling, vibration isolation system and is
powered using a battery bank with an isolated ground to
suppress mechanical and electrical noise.

A. STM tunneling

The STM tip-sample junction is incorporated into the cir-
cuit as shown in Fig. 1(a). The sample is isolated from ground
and connected to two diodes. This is a custom modification to
our STM as well as a new use for STM [30]. In our circuit, the
tip-sample junction acts as a variable capacitor [31–34]. The
tunneling current, diode 1 current (D1C), and diode 2 current
(D2C) are monitored simultaneously. This diode arrangement
is normally used for energy harvesting, but here we use it to
isolate the displacement current from the tunneling current.
For positive bias voltages the tunneling current cannot flow
through D2. The smallest current we measure is 1 pA. At a
tip-sample distance of 2 nm or less, the tunneling current dom-
inates (�100 pA) and flows through D1; for larger distances
and higher bias voltages, the displacement current dominates
(�100 pA) and which flows through D2.

An illustration of rippled graphene and voltage-induced
shape changes is shown in Fig. 1(b). When the bias voltage
increases, the graphene is stretched and the STM tip moves
with the graphene. We attribute this movement to the applied
electric force, which was characterized in our earlier studies
on the effect of voltage ramps [35]. A typical constant-current
point-mode STM measurement of the membrane height in
time is shown in Fig. 1(c). During this experiment, the STM
tip only moves vertically. Note the enormous size of the move-
ment, as compared to atomic corrugations of less than 0.1 nm.
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FIG. 1. STM data sets acquired when STM tip is tunneling elec-
trons. (a) Circuit diagram showing STM tip, sample, bias voltage,
ammeters, and diode arrangement. (b) Sketch of graphene sheet in
rippled state and illustrations of graphene shape changes. (c) Height
fluctuations of graphene. (d) STM tunneling current vs. time for
freestanding and rigid graphene. (e) Standard deviation of tunneling
current vs. setpoint current for freestanding and rigid graphene.

We have previously published similar data sets, and these data
show that it is possible to maintain stable tunneling for hours
and continuously track graphene’s movement. This is one of
the key benefits of point mode. The tunneling current in time
is shown in Fig. 1(d) for both rigid graphene (i.e., graphene on
copper) and flexible freestanding graphene. For the freestand-
ing sample, the average current is the same as the rigid sample,
but the fluctuations are 100 times larger (10 pA vs. 0.1 pA).
The result shown in Fig. 1(d) is independent of the applied
bias voltage (up to 3 V) and feedback gain setting. As the
setpoint current (SPC) increases, the standard deviation also
increases, as shown in Fig. 1(e). We attribute this to sample
heating. This was previously studied in an effort to separate
tunneling current effects from bias voltage effects [35]. When
extrapolated to zero tunneling current, the fluctuations still
contribute 20 pA of current. Here the freestanding graphene
data are taken from flexible graphene that is suspended over
the copper TEM grid holes. When this type of measurement

FIG. 2. STM data sets acquired when the STM tip is not tunnel-
ing electrons. (a) Current through diode 2 versus time for voltages
V = 1, 15, 45 V. (b) Average current vs. voltage through diode 2.
(c) Power through diode 2 vs. time for different voltages. (d) Average
power through diode 2 vs. voltage bias V .

is repeated for rigid graphene, we see no noticable variation
in the standard deviation with SPC, as shown in the lower half
of Fig. 1(e). These are data taken from graphene supported by
copper. We often tunnel directly to the copper bar supports, as
well, which also shows a constant tunneling current with the
same small standard deviation. This is the noise level of our
electronics.

B. STM displacement current

To measure the displacement current at zero tunneling
current, we incrementally backed the STM tip away from
the sample using the coarse motion stage until the distance
was too great for electrons to tunnel through the vacuum
barrier. The coarse motion stage uses a stick-slip mechanism
that provides irregular jumps of about 10 nm. The tip tends
to move farther when moving away from the sample (down
with gravity) compared to moving toward the sample (up
against gravity). It does not require a lot of time, but the tip
is moved back and forth until the right conditions are met.
In this position, the SPC is set to 50 nA, thereby using the
feedback circuit to keep the STM tip stationary (i.e., fully
forward). We then increase the dc bias voltage and monitor
the diode currents. The criteria for having found the proper
tip positon is to allow no constant tunneling current in D1
and to maintain a pulsing current in D2. Typical displacement
currents flowing through D2 in time are shown in Fig. 2(a).
At 1 V, no current is induced, but at 15 V and 45 V, we
consistently observed a spiky, time-dependent D2C. If a tun-
neling current was detected in D1, then we would stop taking
data and reposition the tip farther from the graphene. This
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FIG. 3. Sketch of circuit model with energy barrier diagram.

is done either by taking coarse motion steps away from the
graphene or by fine adjustment of the lateral position of the
tube scanner.

We have studied the displacement current at various loca-
tions across the freestanding graphene and observe a trend.
For locations near the center of the freestanding graphene
sheet, the movement of the graphene can sometimes be too
large and too rapid to even maintain tunneling. Under these
conditions, we would move to a new location. For locations
near the copper support bar, we cannot observe a displacement
current in D2. The STM is either tunneling or we do not see
any current. The data collected are similar to that presented in
green in Fig. 1(e) for rigid surface tunneling.

The low current I-V characteristics of D2 were also mea-
sured and are shown in Fig. 2(b) with resistance labels.
Combining this voltage data with the displacement current
data in Fig. 2(a), the power dissipated in D2 was calculated
and is shown in Fig. 2(c). The maximum instantaneous power
reached is 40 pW. The average power for a large number of
data sets acquired across this sample and other identically
prepared samples of flexible freestanding graphene is shown
in Fig. 2(d). The average power significantly rises for bias
voltages above 10 V. When this same measurement is repeated
for rigid graphene, we do not observe a D2C. This result
is shown near the bottom of Fig. 2(d). Of course, the D2C
flows opposite the bias voltage. Only a displacement current
can flow in this direction. Any current due to field emmision
effects, for example, will flow through D1.

III. GRAPHENE AND CIRCUIT MODEL

A. Graphene membrane and STM tip

The power dissipated in D2 suggests that electrical work
is done on D2 by the motion of the graphene even though it
is held at a single temperature (i.e., room temperature). Of
course, Nyquist showed that one resistor can perform work
on another resistor at a single temperature while in thermody-
namic equilibrium, provided the same amount of work is done
in return [36]. A deeper understanding of this phenomenon
will shed light on our more complex system. To this end, we
developed the model shown in Fig. 3.

The carbon atom closest to the STM tip sits over a ripple,
which fluctuates between convex and concave curvature. We
model the membrane atoms closer to the tip as a Brown-
ian particle in a double-well potential, which represents the
convex and concave curvature states of the ripple [2]. The
particle is in contact with a thermal bath at temperature T (in
units of energy). The Ito-Langevin equation of motion for the
particle including the damping force −ηv and a thermal noise
satisfying the Einstein relation take the form:

dx = v dt, (1a)

m dv =
[
−ηv − U ′(x) − q2 − C0(V )2V 2

2C0(V )d

]
dt

+
√

2T η dwp, (1b)

U (x) = UB

(
x4

4l4
− x2

2l2

)
, (1c)

C(x) = C0(V )

1 + x
d

, C0(V ) = εA(V )

d
= C0 �(V ). (1d)

Here wp(t ) is a zero mean Wiener noise. The STM tip and
sample act as a variable capacitor, d + x(t ) and x(t ) (x � d)
are, respectively, the instantaneous distances between STM
tip and sample and the vertical position of the Brownian
particle measured with respect to the flat configuration of the
graphene membrane. In the double-well potential U (x), UB

and l measure the barrier height and the ripple size, respec-
tively. If the instantaneous charge and voltage drop of the
tip-sample capacitor are q(t ) and u(t ), respectively, then the
electrostatic force exerted on the particle is qu/[2(d + x)] =
q2/[2C0(V )d], where u = q/C(x). In addition, the graphene
sheet is deformed so that the region immediately under the tip
sharpens; as illustrated in Fig. 1(b). The area of this region
then decreases from the value A(0), which is indicated by the
decreasing function �(V ) in Eq. (1d). To compensate for the
oversimplification of substituting a mass particle instead of
a ripple in a membrane, we add a constant tension C0V 2

2d to
Eq. (1b) due to stretching of graphene. Then by defining the
Hamiltonian function as

H(x, p, q) = p2

2m
+ U (x) + q2

2C(x)
− C0(V )V 2x

2d
+ qV, (2)

Eq. (1) can be written as

dx = ∂H
∂ p

dt = p

m
dt, (3a)

d p = −
( η

m
p + ∂H

∂x

)
dt +

√
2T η dwp. (3b)

B. Circuit equation

The Ito-Langevin equation for charge q through the equiv-
alent resistor (diodes of resistances Rj and linear resistor R) is
as follows:

dq =
[

∂

∂q

( T

R
)
− 1

R
∂H
∂q

]
dt +

√
2 T

R dwq, (4a)

∂H
∂q

= V + q

C(x)
, (4b)
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where wq is a Wiener noise independent of wp and equiva-
lent resistance R = R + RE with R−1

E = R−1
1 + R−1

2 . Equation
(4b) provides the voltage drop VR(x) = V + q/C(x) across
the equivalent resistor R. For identical ideal diodes hav-
ing I1(uD) = iD(uD) = I0(euD/Te − 1) and I2 = iD(−uD), the
equivalent resistance is R−1

E = 2I0
uD

sinh uD
Te

, where uD is the
voltage drop across the diodes, I0 the saturation current, and
Te = T

e . Equation (4a) is derived here for the first time. Next,
we show how we arrived at the first term in Eq. (4a).

For a constant resistance R, the first term in Eq. (4a) is
zero and the resulting equation contains the usual Nyquist
noise associated with a resistor R at temperature T . Then the
Fokker-Planck equation (FPE) corresponding to Eqs. (3) and
(4) is

∂ρ

∂t
= − ∂

∂x

(
∂H
∂ p

ρ

)
+ ∂

∂ p

[
∂H
∂x

ρ + η

(
p

m
ρ + T

∂ρ

∂ p

)]

+ ∂

∂q

[
1

R

(
∂H
∂q

ρ + T
∂ρ

∂q

)]
. (5)

The stationary solution of Eq. (5) is the equilibrium prob-
ability density proportional to e−H/T . It is globally and
asymptotically stable, as any initial probability density will
evolve to it [37]. For a nonlinear resistor, R(u) is a function
of the overall charge q. Using Kirchhoff’s laws, we derive in
Appendix A the following relation between u and q:

u
(

1 + R

RE (u)

)
= u + 2I0R sinh

( u

Te

)
= V + q

C
. (6)

If we postulate that Eq. (5) is correct for a nonconstant resis-
tance R(uD), then

∂

∂q

(
T

R
∂ρ

∂q

)
= T

∂2

∂q2

( 1

Rρ
)
− ρ

∂

∂q

( T

R
)
. (6′)

The last term yields the correction to the drift term that
appears in the Ito-Langevin equation (4). The FPE (5) can
also be obtained from a master equation as described in
Appendix A.

IV. STOCHASTIC THERMODYNAMICS

A. Average generated power

From the point of view of the graphene ripple, represented
by the particle in Eq. (1), the circuit is an external system
that does work on it. The heat produced by friction and noise
forces is then [26]

d ′Q =
(
−η

p

m
+

√
2T η

dwp

dt

)
◦ dx(t )

= dH(x, p, q) − ∂H
∂q

◦ dq(t ), (7)

in which the charge q = q(t ) acts as an external parameter
and we have used Eqs. (2) and (3). Here d ′Q > 0 if heat is
absorbed by the particle, and the product ◦ with differentials
is taken in the Stratonovich sense. Here d ′ indicates a small
amount of the quantity; not a differential. The Stratonovich
product on the first line of Eq. (7) can be converted into an Ito

product:

dwp

dt
◦ dx = p

m
◦ dwp = p

m
dwp + 1

2m
d p dwp

= p

m
dwp + 1

2m

√
2T η dt,

in which we have used (dwp)2 = dt . Then

d ′Q = η

m2
(mT − p2)dt +

√
2T η

p

m
dwp(t ). (8)

The average of the noise term in Eq. (8) vanishes due to the
nonanticipative character of the Ito product, thereby yielding〈

d ′Q
dt

〉
= η

m

(
T −

〈
p2

m

〉)
. (9)

This average heat flux vanishes in equilibrium because of the
equipartition theorem.

From the second line in Eq. (7), we obtain the first law of
thermodynamics,

dH(x, v, q) = d ′Q + d ′W. (10)

Here the work done on the particle by the circuit is

d ′W = ∂H
∂q

(x, p, q)◦dq

= ∂H
∂q

[
∂

∂q

( T

R
)
− 1

R
∂H
∂q

]
dt +

√
2 T

R
∂H
∂q

◦dwq

=
[

∂

∂q

(
T

R
∂H
∂q

)
− 1

R

(
∂H
∂q

)2]
dt +

√
2 T

R
∂H
∂q

dwq.

(11)

We have converted the Stratonovich product to an Ito product
on the last line of this expression. From Eq. (11), the average
power absorbed by the particle is〈

d ′W
dt

〉
=

〈
∂

∂q

(
T

R
∂H
∂q

)〉
−

〈
1

R

(
∂H
∂q

)2〉
. (12)

Using the equilibrium probability density to calculate the av-
erage and integrating by parts, the average power absorbed by
the particle is found to be zero. Since ∂H

∂q = V + q/C(x) =
VR(x) is the voltage drop across the equivalent resistor R,
the time-averaged power dissipated in the resistor equals the
time-averaged power supplied by the thermal bath. Thus, from
the resistor’s perspective, the movement of the graphene ripple
represents a source of power equal to the average thermal
power. If R is held constant, then the first term in Eq. (12)
is Nyquist’s noise power formula T

RC , while the second term
V 2
R
R is the power dissipated in the resistor. The exact result,

when diodes are considered, is shown in Fig. 4.
The Nyquist result (dashed line) can be understood as

follows: For low diode voltages, the diode resistance is much
larger than the series resistor, so the power dissipated is low.
As the diode voltage rises, its resistance drops, increasing the
dissipated power. Eventually, the diode resistance is much
smaller than the series resistor and the power saturates. The
exact result follows a similar trend, except that it has a large
power enhancement over the Nyquist result. The increase in
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FIG. 4. Noise power vs. diode voltage showing the power en-
hancement over Nyquist’s formula.

power, in the middle section, comes from the rate of change
in resistance (with voltage across the diode) of the diode.

B. Model simulation and results

We confirmed these predictions by performing numerical
simulations of the stochastic model equations (3) and (4)
using the first-order Milstein numerical scheme [38]. We have
chosen parameters that allow the simulation to capture the
important physics in a qualitative manner. A quantitative com-
parison is made later. Simulations allow us to confirm that
time averages of the power dissipated at the diodes are equal
to time averages of power generated by thermal fluctuations.
We have used the following parameters in the numerical sim-
ulations m = 1, l = 1, UB = 4, R = 0.1, T = 0.5, η = 1, d =
10, I0 = 0.0002, and Te = 0.1 (see Fig. 6 panels for other
parameters and alterations). To account for the graphene shape
change, we have C0 fall from 5 to 1 as V increases from
1 to 10, which is within the range of the battery voltage in
our numerical simulations. To ensure numerical convergence,
simulations were averaged over 10 million time steps and 1
million realizations. The long time interval used to calculate
time averages ensures that thermal equilibrium is reached and
time averages equal equilibrium averages. As another check,
we also ran separate simulations using either Stratonovich
or Ito protocols and confirmed the averages agreed with one
another.

The particle’s position randomly moves between the two
minima of the double-well potential, as shown in Fig. 5(a).
This position plus d is the distance to the tip. So, as the particle
moves, the capacitance, C, of the circuit is modified. The
overall charge on the capacitor fluctuates in time about the
average value, −CV , and has multiplicative noise, as shown
in Fig. 5(b). As the charge changes, the electric force on the
particle is modified. These interactions provide the intimate
coupling that ultimately works to maintain thermodynamic
equilibrium with each time step. The current flowing through
the circuit is shown in Fig. 5(c), and the power dissipated in
D2 is shown in Fig. 5(d).

FIG. 5. Ito-Langevin equation simulation results for a circuit
with diodes and resistor. (a) Height of graphene ripple x, (b) charge
q, (c) total current, and (d) power dissipated in D2 versus time.

For this study, we are interested in the direction of cur-
rent flow, either clockwise through D1 or counterclockwise
through D2. Using the value of q̇, we have separately cal-
culated the average power generated and dissipated from the
dynamics, using Eq. (12) for each half cycle. Even in the half
cycle, the two power terms are equal. The average power (both
generated and dissipated), along with Nyquist’s prediction, is
shown in Fig. 6(a). The power is found to increase with bias
voltage, which is qualitatively similar to our experimental re-
sults. This result is unusual given that the power dissipated in
a resistor is independent of bias voltage, according to Nyquist
V 2
R
R = T

RC . However, for flexible graphene, the capacitance
decreases as the bias voltage increases. As a result, the voltage
drop across the resistor increases, V 2

R = T
C . For the case with

diodes, as the voltage increases, the diode resistance drops.

FIG. 6. Ito-Langevin equation simulation results for a circuit
with diodes and resistor. (a) Average counterclockwise power versus
battery voltage. (b) Average power spectrum density of power vs.
frequency.
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This increases the exact power above the Nyquist power, as
shown in Fig. 6(a).

If we short circuit the diodes, then our thermal power
formula might appear to be similar to the Nyquist result
V 2
R
R = T

RC , but this is purely formal. For Nyquist’s result,
the origin of the thermal noise is the resistor, and the role
of the capacitor is to set the bandwidth. In contrast, for our
model, the power includes contributions from the Brownian
motion of the graphene ripple through a change in capac-
itance. As a result, the double-well potential introduces a
new timescale, which is the barrier crossing rate. This gives
rise to very low frequency oscillations, which were observed
experimentally in an earlier study and which motivated this
work [39]. To illustrate, the average power spectral density for
the power dissipated at the resistor without diodes is plotted
using two different velocity relaxation values for η of 1 and
10 in Fig. 6(b). The total power dissipated is the same, but
increasing the relaxation time reduces the barrier crossing rate
and therefore redistributes power to lower frequencies. This
spectral redistribution of power adds technological value, as
previously discussed by López-Suárez et al. [40]. Note that
these results are shown for linear resistors, and the diodes
are not responsible for this effect. It would be difficult to
compare this prediction with the experiments, due to the STM
instrumentation response. Nevertheless, we present this result
to show that graphene is playing an essential role in the noise
power, unlike a fixed capacitor. In addition, barrier crossing
events are a proposed mechanism for producing 1/ f noise,
which this model quantitatively demonstrates [41].

C. Equilibrium average of the generated power

The overall equilibrium power due to the electric circuit
is zero because the dissipated power at diodes and resistor
are compensated exactly by the power generated by thermal
fluctuations, which is the first term on the right-hand side of
Eq. (12). In this section, we find approximate formulas for
the equilibrium average of the generated power. This allows
us to make a quantitative comparision of how the generated
power varies with bias voltage. We show in Appendix B that
the generated power is

〈
d ′W
dt

〉
g

=
∫

e−H
T

∂
∂q

( ∂H
∂q

R+RE

)
dxd pdq∫

e−H
T dx d p dq

, (13a)

= K (V )
∫ √

1 + x
d e−Hr

T dx∫ (
1+ x

d

)−1/2
e−Hr

T dx
, (13b)

Hr (x) = U (x) − C0V 2�(V )

2

(
1

1 + x
d

+ x

d

)
, (13c)

K (V ) = 2I0T

�(V )C0(Te+2I0R)
. (13d)

The integrals in Eq. (13b), which are independent of the
particle mass, can be evaluated approximately as follows.

The integration interval in Eq. (13b) is [−d + εd,∞),
where εd > 0 is the minimum allowed distance between the
graphene sample and the STM tip. This minimum distance
is not known precisely from the experiment. However, we

will show that, when it is appreciable, the measured average
dissipated power does not depend on the minimum distance.
Thus, we do not need to know the latter. Clearly, the integrals
in Eq. (13b) depend on the structure of the function Hr (x),
which has a vertical asymptote at x = −d and on ε.

1. Structure of Hr(x) for x > −d

First, we approximate the extrema of Hr (x) from

∂Hr

∂x
= x

[
UB

l4
(x2 − l2) − C0V 2�(V )

2d2

2 + x
d(

1 + x
d

)2

]

= (X − 1)d

X 2l2

[
UBd2

l2

(
X 4 − 2X 3 + d2 − l2

d2
X 2

)

− C0V 2l2�(V )(X + 1)

2d2

]
= 0, (14)

where X = 1 + x/d and d > l . We see that Hr has a vertical
asymptote at X = 0, an extremum at x = 0 (i.e., X = 1), one
negative zero (only one change of sign between coefficients
when −X replaces X in this equation), and either one or three
positive zeros X0 of Eq. (14) (three changes of sign between
coefficients).

Now both UB/T and C0V 2/T are large. Then, for a wide
range of parameters, the following occurs: The positive solu-
tion near X = 0 comes from a balance between the two last
terms in Eq. (14), i.e.,

X0 ∼ V l2

d

√
C0�(V )

2UB(d2 − l2)
+ C0V 2�(V )l4

4UBd2(d2 − l2)
, (15)

and x0 = (X0 − 1)d < −l is a maximum of Hr , as shown by
calculating ∂2Hr/∂x2 and using Eq. (14):

∂2Hr

∂x2
(x0)= x0

l4

[
2UBx0 + C0V 2�(V )l3

2d3

3 + x0
d(

1 + x0
d

)3

]

=2UB
x0

l4

[
x0

l
+

(
x2

0 − l2
)
(3d + x0)

2(x0 + d )(2d + x0)

]
< 0. (16)

Similarly, x0 = 0 (X0 = 1) is a maximum, which follows from
Eq. (14). Then, for V > 0 and as x increases from x = −d
(where Hr as a vertical asymptote), Hr increases from −∞
to a sharp maximum at X0 approximately given by Eq. (15),
decreases to a relatively shallow minimum near x = −l , in-
creases to a maximum at x0 = 0, decreases to a minimum
near x = l , and then increases indefinitely. For example, for
V = 10 V, the maximum of Hr (x)/T is 4.5 × 1016 (reached
just past the vertical asymptote at x = −d). The global mini-
mum for X > X0 given by Eq. (15) is −103.3 and is reached
near x = −l . Thus, for −d � x � d , the lowest value of Hr is
−∞ at x = −d , whereas it is reached at the global minimum
near x = −d for x > (−1 + X0)d .

2. Role of the minimum distance

The minimum allowed distance from graphene sheet to
STM tip is xm + d = εd , i.e., Xm = ε. Then the average gen-
erated power is determined by the contribution to the integrals
in Eq. (13b) at this minimum distance if ε < X0, the maximum
given by Eq. (15). If ε > X0, then the integrals are dominated
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by the contribution near the global minimum of Hr . Since
X0 depends on V , its relative position with respect to ε may
change with V .

We now calculate the average generated power using
Eq. (13b) when the minimum distance satisfies ε < X0(V ),
given by Eq. (15):〈

d ′W
dt

〉
g

= K (V )

∫ ∞
1

√
y e−Hr (y)

T dy∫ ∞
1 y−1/2e−Hr (y)

T dy

= K (V )

(∫ X0/ε

1 + ∫ ∞
X0/ε

)√
y e−Hr (y)

T dy(∫ X0/ε

1 + ∫ ∞
X0/ε

)
y−1/2e−Hr (y)

T dy
. (17)

Here we have changed variables as x = (−1 + εy)d , i.e., X =
εy. The largest contribution to these integrals comes from
the boundary terms

∫ X0/ε

1 in the numerator and denomina-
tor. Integration by parts yields the dominant contributions.
Defining a = C0V 2�(V )/(2T ), the integrals in numerator and
denominator are as follows:

J±(ε) =
∫ X0/ε

1
y±1/2ea(εy−1)−U ((εy−1)d )/T e

a
εy dy. (18)

To approximate these integrals as ε → 0+, we integrate by
parts to get [42],

J±(ε)= ε

aea

(
e

a
ε e− U [(ε−1)d]

T −
(X0

ε

)2±1/2

e− U [(X0−1)d]
T e

a
X0

+
∫ X0/ε

1
e

a
(εy)

∂

∂y

{
y2±1/2e− U [(εy−1)d]

T
}
dy

)

∼ εe−a

a
e

a
ε e− U [(ε−1)d]

T , (19)

where the last result follows since the second term and the
integral are much smaller. The other integrals in Eq. (17) are
dominated by the contributions of the local positive minima
that are the zeros of Eq. (14). However, in the limit ε → 0+,
these contributions are exponentially small with respect to that
given by Eq. (19). We also have

J+(ε)

J−(ε)
∼1 −

(X0

ε
− 1

)(X0

ε

)3/2

e
a

X0 e− a
ε

×e
1
T {U [(ε−1)d]−U [(X0−1)d]} ∼ 1, (20)

as ε → 0+. Thus, for ε < X0(V ), the average generated
power in Eq. (17) becomes〈

d ′W
dt

〉
g

∼ εK (V ) = 2I0T ε

�(V )C0(Te + 2I0R)
. (21)

Here C0�(V )/ε = Cmax(V ) is the maximum value of the ca-
pacitance, which is achieved at the cutoff minimum distance
between graphene and STM tip. The average generated power
of Eq. (21) tends to zero as ε → 0+. We conclude that the
average generated power is zero in equilibrium if the mini-
mum distance cutoff is allowed to be zero. We have checked
this conclusion by calculating numerically the cutoff integrals
in Eq. (13b), confirming graphically that X0 is a maximum of
Hr , and observing how the average generated power decreases
as the cutoff decreases (up to 10−12).

If ε > X0(V ) (minimum cutoff distance larger than the
sharp maximum near −d), then the integrals in Eq. (13b) can
be approximated by the Laplace method [42] near the global
minimum past the maximum at X0(V ). Then the average gen-
erated power is

〈
d ′W
dt

〉
g

∼ 2I0T

�(V )C0(Te + 2I0R)

(
1 + x0,m

d

)[
1 − T l2

4UB(d − l )2

]

∼ 2I0T

�(V )C0(Te + 2I0R)

{
1 − l

d
− C0V 2�(V )l3

4UBd2(d − l )2

[
2d − l − 4l2 − 11dl + 4d2

4UB(d − l )2
T l

]
− T l2

4UBd (d − l )

}
. (22)

Here x0,m is the global minimum and the second approximate
expression holds for small enough voltages V . Numerical cal-
culations of the generated power in Eq. (13a) (with sufficiently
large cutoff) show that Eq. (22) agrees quite well with it.

We point out that for our diode configuration, the average
power generated in equilibrium through either diode is one
half of those calculated before. For ideal diode characteristics
and the moderate to large values of the current, each diode lets
current pass in only one direction. Since both are supposed to
be equal, their average generated powers are equal and they
add to the overall power, which is twice that of the individual
diodes.

V. COMPARING THEORY AND EXPERIMENTS

To make a quantitative comparison of the results of the
theory with experiments, we use the following values of the
parameters in the equations of motion (1)–(3): UB/4 = 1 eV
(bending energy of suspended graphene), l = 1 nm (ripple

height), d = 10l (average distance between graphene and
STM tip), η/m = 1 THz (acoustic phonon frequency) [1].
Using resistance and power data from the experimental mea-
surements presented in Fig. 2, we estimate a capacitance
near 1 fF for the tip-graphene junction, therefore C0 = 1 fF.
The particle mass corresponds to the mass of the atoms in
the ripple below the STM tip, thereby m = 2 × 10−22Na kg,
where we estimate Na = 104. However, as noted before, the
equilibrum averages are independent of m. Room tempera-
ture is T = 25.7 meV. In the equations for the circuit, the
saturation current I0 = 1 nA follows from data in Fig. 2. The
series resistor R includes the series resistance of the diodes
at high injection and the resistance of the circuit wires. We
estimate I0R = 0.09 V, and then I0T/(Te + 2I0R)/C0 ≈ 0.02
pW. A reasonable fit to the measurements in Fig. 2(d) is the
decreasing function

�(V ) =
{

1 + 170
tanh

[
1

980

(
V
V0

− 9
)2]

1 + e8(9− V
V0

)

}−1

, (23)
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FIG. 7. Comparing numerical theory, approximate asymptotic
theory, and STM experiments. (a) Numerically calculated (contin-
uous red line), and approximate asymptotic (dotted line) equilibrium
average of the power (in pW) dissipated at one diode versus the
battery voltage (in volts). (b) Numerically calculated (continuous red
line) and STM experimental data (green squares). The numerical
theory refers to numerical evaluation of the integrals in Eq. (13b)
using Mathematica and the asymptotic theory to Eq. (22). In both
cases, �(V ) is given by Eq. (23).

where V = 9V0 = 9 V is selected as the value at which the
dissipated power in Fig. 2(d) appreciably departs from zero.
The integrations over x in Eq. (13b) have a cutoff ε > X0 for
the voltage range up to 45 V considered in the experiments
(ε = l/d = 0.1). We have used Mathematica to compute nu-
merically the integrals appearing in Eq. (13b). Explaining why
Eq. (23) is a good fit will surely require a more complex model
than the Brownian particle of Eqs. (1).

While the equilibrium averages were reduced to 1D inte-
grals that could be calculated numerically in a straightforward
manner, the time averages require solving numerically the
Ito-Langevin equations (3) and (4). The parameters involved
in these equations (listed above) are too extreme and there-
fore the equations are too stiff for numerical integration out
to the timescale of the STM experiments. Hence, we have
integrated them (using the first-order Milstein algorithm [38])
with less extreme numerical parameter values and checked
that time averages equal equilibrium averages for sufficiently
large intervals of time. Thus, the agreement between fluctu-
ating currents or average power obtained from experiments
and from numerical simulations of the stochastic equations
can only be qualitative. However, equilibrium averages are
much less costly to calculate numerically. We also have accu-
rate asymptotic approximations found in the previous section.
Using them, we quantitatively fit the data of the dissipated
power at diode 2 from experiments.

Equilibrium average of power dissipated at diode 2

The equilibrium average of the power dissipated at
one diode is half the overall average dissipated power. As the
equilibrium averages of dissipated and generated power are
the same, the average dissipated power at one diode is one
half of the power given by Eq. (13b). Figure 7(a) compares
the result of direct numerical calculation of the equilibrium
average of the dissipated power at one diode to one half the
power given by Eq. (22). For the values extracted from our
experimental configuration, there is good agreement between

the approximation of Eq. (22) and the direct numerical calcu-
lation of Eq. (13b). In both cases, �(V ) is given by Eq. (23).
The agreement between the asymptotic and numerical results
worsens as the voltage increases. However, Eq. (22) captures
well the general trend of the average power dissipated at diode
2. The numerical theory fits well with the STM experimental
result as shown in in Fig. 7(b).

VI. DISCUSSION AND SUMMARY

In this paper, we have studied theoretically and exper-
imentally spontaneous thermal fluctuations of a graphene
membrane coupled to a circuit with diodes having nonlinear
current-voltage characteristics. We have developed a model in
which fluctuating freestanding graphene and STM tip act as
moving plates of a variable capacitor coupled to diodes and
battery that supplies dc voltage. The graphene sheet appears
as a soft membrane covered with ripples whose curvature
fluctuates between concave and convex as it exchanges energy
with the circuit and the thermal bath. We have modeled the
atoms on the ripple opposed to the STM tip as a single mass
particle in a double-well potential. The particle is subject
to electrostatic forces opposed by the stretching reaction of
other carbon atoms in the membrane, friction, and thermal
noise. Electrostatic forces are induced by the variable distance
between particle (i.e., the graphene ripple) and STM tip. In
addition, the graphene capacitance decreases as the battery
voltage increases. This effect mimics the increasing defor-
mation of the membrane opposite the STM tip and causes
the experimentally observed increment of the average dissi-
pated power at the diodes. The nonlinear characteristics of
the diodes require adding a temperature dependent drift to the
stochastic Ito-Langevin equations of the circuit. These equa-
tions are different from those with the usual Nyquist noise
of linear resistors and have not previously been studied using
stochastic thermodynamics. The latter is necessary to consider
the dynamics of fluctuations and to show that all energy dissi-
pated at diodes and resistors is fully provided by the thermal
bath, thus satisfying the second law of thermodynamics.

We have calculated the equilibrium average of power gen-
erated and dissipated at the diodes both numerically and
by asymptotic approximations of integrals. Using realistic
parameter values for graphene and others extracted from ex-
periments, we see that these averages involve scales differing
by many orders of magnitude. This means that the stochastic
Ito-Langevin equations describing fluctuating dynamics are
very stiff. Therefore, their numerical simulations are very
costly and impractical. Thus, we have simulated these equa-
tions with milder numerical parameters. We have checked
that long time averages of dissipated power at one diode are
exactly the same as long time averages of power supplied by
the thermal bath. Time averages agree with averages using
the equilibrium probability density. The time averages of the
positive and negative current are equal to each other. In turn,
time averages of dissipated and generated powers of positive
(respectively, negative) currents are also equal to each other.

In our experiments, we have studied the thermal fluctua-
tions in freestanding graphene membranes using point-mode
scanning tunneling microscopy. After disabling the STM
feedback circuit, a displacement current was measured. We
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measured the fluctuating current at the diodes, the fluctuating
dissipated power, and its long time average. The latter is very
small for values of battery voltage up to about 10 V. Then the
average dissipated power increases noticeably. We used this
observation to fit the graphene capacitance to an appropriate
decreasing function of the bias voltage. We modeled the ripple
closest to the STM tip as a Brownian particle in a double-
well potential. When the graphene moves, charge must flow
through the circuit and perform electrical work. Our model
provides a rigorous demonstration that continuous thermal
power can be supplied by a Brownian particle at a single
temperature while in thermodynamic equilibrium, provided
the same amount of power is continuously dissipated in a
resistor. Here coupling to the circuit allows electrical work to
be carried out on the load resistor without violating the second
law of thermodynamics. Nonequilibrium fluctuations due to
extra noises [43,44] or to different temperatures in electrical
circuits [45] will produce entropy and measurable deviations
from detailed balance [44,45] and are worth investigating in
freestanding graphene.
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APPENDIX A: MASTER EQUATION

Let us ignore the variation of x so that the graphene ripple
and the STM tip behave as the fixed two plates of a capacitor.
Following Landauer [46], van Kampen [47], and Sokolov
[48,49], the probability of having n electrons in the STM tip
satisfies the master equation

ρ̇n =wn+1,nρn+1 + wn−1,n pn−1

−(wn,n+1 + wn,n−1) ρn. (A1)

The transition probabilities per unit time, wn,m, characterize
the ways electrons can transfer between capacitor plates and
also depend on the type of noise we consider. Here we con-
sider thermal noise and ignore shot noise; see Ref. [46] for the
latter. Then detailed balance implies [47,48]

wn,n+1

wn+1,n
= exp

(
−Hn+1 − Hn

T

)
≡ exp

(
−D+Hn

T

)
, (A2)

where Hn is the Hamiltonian with n electrons and D+Hn =
Hn+1 − Hn is a forward finite difference. Equations (A1) and
(A2) imply

ρ̇n = D+[wn,n−1(ρn − e−D+Hn−1/T ρn−1)]. (A3)

In the continuum limit n → ∞ with fixed q = ne, a Taylor
expansion of ρ(ne, t ) = ρn(t ) and wn,n−1 = w(ne) produces

the FPE

∂ρ

∂t
= ∂

∂q

[
e2w

T

(
∂H
∂q

ρ + T
∂ρ

∂q

)]
. (A4)

It remains to identify the quantity e2w/T . In the absence
of noise, Kirchhoff’s current law gives q̇ = q̇1 + q̇2, which
together with Kirchhoff’s voltage law

Rq̇ + V + q

C
− u = 0, q̇ j = − u

Rj
, (A5)

yield

u = V + q
C

1 + R
R1

+ R
R2

= 1

1 + R
RE

(
V + q

C

)
. (A6)

Since R−1
E (u) = 2I0 sinh(u/Te)/u, this expression yields the

following relation between the potential drop at the diodes,
u, and the overall charge q:

u + 2I0R sinh
( u

Te

)
= V + q

C
. (A7)

Substituting Eq. (A6) into the Kirchhoff voltage law, we
obtain the following deterministic equation for q:

q̇ = − 1

R + RE

(
V + q

C

)
, (A8)

which coincides with Eq. (5) if T = 0 and we keep only the
circuit part of the model. Ignoring diffusion, the drift part of
the FPE (A4) has characteristic curves

dq

dt
= −e2w

T

∂H
∂q

= −e2w

T

(
V + q

C

)
.

This expression agrees with Eq. (A8) provided we identify

e2w

T
= 1

R + RE
= 1

R . (A9)

Then the FPE (A4) becomes

∂ρ

∂t
= ∂

∂q

[
1

R

(
∂H
∂q

ρ + T
∂ρ

∂q

)]

= ∂

∂q

[
ρ

R
∂H
∂q

− ρ
∂

∂q

( T

R
)
+ ∂

∂q

(T ρ

R
)]

. (A10)

Adding the terms corresponding to the Brownian particle, we
complete the FPE (5).

APPENDIX B: EQUILIBRIUM AVERAGE OF THE
GENERATED POWER

To derive Eq. (13b), we need to reduce the triple integrals
in Eq. (13a) to single integrals. To this end, we have used
Eqs. (4b) and (6) and the following formula that comes from
differentiation of Eq. (6):

∂u

∂q
= 1

C(x)
[
1 + 2I0R

Te
cosh

(
u
Te

)]. (B1)
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First, we obtain

∂

∂q

(
T

R + RE

∂H
∂q

)
= 2T I0

∂

∂q

[
sinh

( u

Te

)]

= 2I0T

Te
cosh

( u

Te

)∂u

∂q

= 2eI0 cosh
(

u
Te

)
C(x)

[
1+ 2I0R

Te
cosh

(
u
Te

)]. (B2)

Second, we calculate the Gaussian integrals over q in
Eq. (13a). To this end, we note that∫

f (q) e− H
T dq = f

(
−T

∂

∂ζ

) ∫
e− H̃

T dq
∣∣∣
ζ=0

, (B3)

H̃(x, p, q, ζ ) = H(x, p, q) + qζ . (B4)

The energy H̃(x, p, q, ζ ) can be written as

H̃(x, p, q, ζ )= p2

2m
+U (x)−C0V 2x

2d
+ [q+C(x)(V +ζ )]2

2C(x)

−1

2
C(x)(V + ζ )2. (B5)

The Gaussian integrals over p and q can be performed by
completing squares with the result∫

e− H̃
T d p dq = 2πT

√
mC(x) e− H̃r

T , (B6)

H̃r (x, ζ ) = U (x)−C0V 2x

2d
− 1

2
C(x)(V + ζ )2. (B7)

Then the derivative with respect to ζ that appears in Eq. (B3)
produces an argument q = −C(x)V for ζ = 0. Inserting this
in Eq. (A7), we obtain the solution u = 0. For u = 0, Eq. (B2)
becomes

∂

∂q

(
T

R + RE

∂H
∂q

)
= 2T I0

(
1 + x

d

)
C0�(V )(Te+2I0R)

. (B8)

Using Eq. (B6) and (B8), we find

〈
d ′W
dt

〉
g

= 2T I0
∫ (

1+ x
d

) 1
2e−Hr

T dx

C0�(V )(Te+2I0R)
∫ (

1+ x
d

)− 1
2e−Hr

T dx
, (B9)

which is Eq. (13b). Here Hr (x) = H̃r (x, 0) is the same as in
Eq. (13c).
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